Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Biochimie ; 202: 206-211, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2060445

ABSTRACT

Thrombosis is a hallmark of severe COVID-19. Alpha-1-antitrypsin (AAT), an inflammation-inducible serpin with anti-inflammatory, tissue protective and anticoagulant properties may be involved in severe COVID-19 pathophysiology including thrombosis onset. In this study, we examined AAT ability to predict occurrence of thrombosis and in-hospital mortality during COVID-19. To do so, we performed a monocentric cross-sectional study of 137 hospitalized patients with COVID-19 of whom 56 (41%) were critically ill and 33 (22.4%) suffered from thrombosis during hospitalization. We measured AAT and IL-6 plasma levels in all patients and phenotyped AAT in a subset of patients with or without thrombosis paired for age, sex and COVID-19 severity. We observed that AAT levels at admission were higher in both non-survivors and thrombosis patients than in survivors and non-thrombosis patients. AAT: IL-6 ratio was lower in non-survivors and thrombosis patients. In a logistic regression multivariable analysis model adjusted on age, BMI and D-dimer levels, a higher AAT: IL-6 was a protective factor of both in-hospital mortality (Odds ratio, OR: 0.07 95%CI [0.02-0.25], p < 0.001) and thrombosis (OR 0.36 95%CI [0.14-0.82], p = 0.02). AAT phenotyping did not show a higher proportion of AAT abnormal variants in thrombosis patients.Our findings suggest an insufficient production of AAT regarding inflammation intensity during severe COVID-19. AAT appeared as a powerful predictive marker of severity, mortality and thrombosis mirroring the imbalance between harmful inflammation and protective counter-balancing mechanism in COVID-19. Restoring the balance between AAT and inflammation could offer therapeutic opportunities in severe COVID-19.


Subject(s)
COVID-19 , Hospital Mortality , Interleukin-6 , Thrombosis , alpha 1-Antitrypsin , Humans , COVID-19/complications , COVID-19/mortality , Cross-Sectional Studies , Inflammation , Interleukin-6/blood , alpha 1-Antitrypsin/blood , Thrombosis/virology
3.
J Clin Virol ; 145: 104999, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472030

ABSTRACT

OBJECTIVES: Risk of reinfection with SARS-CoV-2 among health-care workers (HCWs) is unknown. We assessed the incidence rate of SARS-CoV-2 reinfection in the real-life setting of a longitudinal observational cohort of HCWs from the Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, France, during the first and second waves of COVID-19 epidemic. METHODS: From March to December 2020, HCWs were subjected to molecular and serology testing of SARS-CoV-2. Reinfection was defined as a positive test result during the first wave, either by serology or PCR, followed by a positive PCR during the second wave. Evolution of COVID-19 status of HWCs was assessed by a Sankey diagram. RESULTS: A total of 7765 tests (4579 PCR and 3186 serology) were carried out and 4168 HCWs had at least one test result during the follow-up period with a positivity rate of 15.9%. No case of reinfection during the second wave could be observed among 102 positive HCWs of the first wave, nor among 175 HCWs found positive by PCR during the second wave who were negative during the first wave. CONCLUSIONS: SARS-CoV-2 reinfection was not observed among HCWs, suggesting a protective immunity against reinfection that lasts at least 8 months post infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Health Personnel , Hospitals , Humans , Prospective Studies , Reinfection
4.
Clin Infect Dis ; 73(6): e1337-e1344, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1411827

ABSTRACT

BACKGROUND: Humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs within the first weeks after coronavirus disease 2019 (COVID-19). Those antibodies exert a neutralizing activity against SARS-CoV-2, whose evolution over time after COVID-19 as well as efficiency against novel variants are poorly characterized. METHODS: In this prospective study, sera of 107 patients hospitalized with COVID-19 were collected at 3 and 6 months postinfection. We performed quantitative neutralization experiments on top of high-throughput serological assays evaluating anti-spike (S) and anti-nucleocapsid (NP) immunoglobulin G (IgG). RESULTS: Levels of seroneutralization and IgG rates against the ancestral strain decreased significantly over time. After 6 months, 2.8% of the patients had a negative serological status for both anti-S and anti-NP IgG. However, all sera had a persistent and effective neutralizing effect against SARS-CoV-2. IgG levels correlated with seroneutralization, and this correlation was stronger for anti-S than for anti-NP antibodies. The level of seroneutralization quantified at 6 months correlated with markers of initial severity, notably admission to intensive care units and the need for mechanical invasive ventilation. In addition, sera collected at 6 months were tested against multiple SARS-CoV-2 variants and showed efficient neutralizing effects against the D614G, B.1.1.7, and P.1 variants but significantly weaker activity against the B.1.351 variant. CONCLUSIONS: Decrease in IgG rates and serological assays becoming negative did not imply loss of neutralizing capacity. Our results indicate a sustained humoral response against the ancestral strain and the D614G, B.1.1.7, and P.1 variants for at least 6 months in patients previously hospitalized for COVID-19. A weaker protection was, however, observed for the B.1.351 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Hospitalization , Humans , Prospective Studies , Spike Glycoprotein, Coronavirus
5.
Front Med (Lausanne) ; 7: 586307, 2020.
Article in English | MEDLINE | ID: covidwho-954333

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) has been associated with cardiovascular complications and coagulation disorders. Objectives: To explore clinical and biological parameters of COVID-19 patients with hospitalization criteria that could predict referral to intensive care unit (ICU). Methods: Analyzing the clinical and biological profiles of COVID-19 patients at admission. Results: Among 99 consecutive patients that fulfilled criteria for hospitalization, 48 were hospitalized in the medicine department, 21 were first admitted to the medicine ward department and referred later to ICU, and 30 were directly admitted to ICU from the emergency department. At admission, patients requiring ICU were more likely to have lymphopenia, decreased SpO2, a D-dimer level above 1,000 ng/mL, and a higher high-sensitivity cardiac troponin (Hs-cTnI) level. A receiver operating characteristic curve analysis identified Hs-cTnI above 9.75 pg/mL as the best predictive criteria for ICU referral [area under the curve (AUC), 86.4; 95% CI, 76.6-96.2]. This cutoff for Hs-cTnI was confirmed in univariate [odds ratio (OR), 22.8; 95% CI, 6.0-116.2] and multivariate analysis after adjustment for D-dimer level (adjusted OR, 20.85; 95% CI, 4.76-128.4). Transthoracic echocardiography parameters subsequently measured in 72 patients showed an increased right ventricular (RV) afterload correlated with Hs-cTnI (r = 0.42, p = 0.010) and D-dimer (r = 0.18, p = 0.047). Conclusion: Hs-cTnI appears to be the best relevant predictive factor for referring COVID-19 patients to ICU. This result associated with the correlation of D-dimer with RV dilatation probably reflects a myocardial injury due to an increased RV wall tension. This reinforces the hypothesis of a COVID-19-associated microvascular thrombosis inducing a higher RV afterload.

7.
J Clin Virol ; 132: 104568, 2020 11.
Article in English | MEDLINE | ID: covidwho-693375

ABSTRACT

Facing the ongoing pandemic caused by SARS-CoV-2, there is an urgent need for serological assays identifying individuals with on-going infection as well as past coronavirus infectious disease 2019 (COVID-19). We herein evaluated the analytical performances of the CE IVD-labeled Abbott SARS-CoV-2 IgG assay (Des Plaines, IL, USA) carried out with the automated Abbott Architect™ i2000 platform at Hôpital Européen Georges Pompidou, Paris, France, using serum sample panels obtained from health-workers with COVID-19 history confirmed by positive nucleic acid amplification-based diagnosis and from patients randomly selected for whom serum samples were collected before the COVID-19 epidemic. The Abbott SARS-CoV-2 IgG assay showed sensitivity of 94 % and specificity of 100 %, demonstrating high analytical performances allowing convenient management of suspected on-going and past-infections. In addition, the SARS-CoV-2 IgG positivity rates were compared in COVID-19 positive and COVID-19 free areas from our hospital. Thus, the frequency of SARS-CoV-2-specific IgG was around 10-fold higher in COVID-19 areas than COVID-19 free areas (75 % versus 8%; P < 0.001). Interestingly, several inpatients hospitalized in COVID-19 free areas suffering from a wide range of unexplained clinical features including cardiac, vascular, renal, metabolic and infectious disorders, were unexpectedly found seropositive for SARS-CoV-2 IgG by systematic routine serology, suggesting possible causal involvement of SARS-CoV-2 infection. Taken together, these observations highlight the potential interest of SARS-CoV-2-specific serology in the context of COVID-19 epidemic, especially to assess past SARS-CoV-2 infection as well as possible unexpected COVID-19-associated disorders.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing , COVID-19 , Incidental Findings , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL